WISCONSIN UNIV=MADISON MATHEMATICS RESEARCH CENTER F/6 12/1

A THEOREM CONCERNING UNIFORM SIMPLIFICATION AT A TRANSITION POI==ETC(U)
AUG 80 Y SIBUYA DAAG29=-80-C=-0041
MRC-TSR=-2103 NL

. KEN
|




AMA093564

neYd

e ¢

F

MRC Technical Summary Report #2103
A THEOREM CONCERNING UNIFORM
SIMPLIFICATION AT A TRANSITION POINT
AND THE PROBLEM OF RESONANCE

Yasutaka Sibuya

Mathematics Research Center
University of Wisconsin—Madison

610 Walnut Street \\,/
Madison, Wisconsin 53706 ’, . _
August 1980 ’ :
/

(Received June 13, 1980)

Approved for public release
Distribution unjimited

ponsorcd by
U. S. Army Reseavrch Office National Science Foundation

P. 6 Box 12211 Washington, D.C. 20550

Regcarch Triangl:e Park
North Carolina 27709

U i 22 U0




UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

A THEOREM CONCERNING UNIFORM SIMPLIFICATION AT A TRANSITION
*
POINT AND THE PROBLEM OF RESONANCE
Yasutaka Sibuya’

Technical Summary Report #2103
August 1980

ABSTRACT
Given sectors Sj = {e; aj < arg € < bj' 0 < |s| <p}t (1 <3< vy and

functions Gj (1 <3 <v) such that (i) (J Sj = {e; 0 < [e]| < ¢}, (ii) éj
3

is holomorphic in Sj' (iii) Gj is asymptotically zero as e - 0 in Sj,

(iv) [6j(s) - csk(s)l < <,

X . s
exp{-cl/iel } in Sj N Sk for some positive
numbers c , ¢, and A whenever Sj N Sk # ], We prove that

A .
Ié,(s)[ < ¢ expi{-c /|e| } in S. for some positive number c.,. Then,
3 = 2 1 3j 2
S V. )
utilizing this result, we prove that Matkowsky-condition implies the resonance
in the sense of N. Kopell under a reasonable assumption. The sufficiency of
Matkowsky-condition with regard to the Ackerberg-0'Malley resonance has been

an open guestion. This work gives an affirmative answer to this question in

a reasonably general case.
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SIGNIFICANCE AND EXPLANATION
The basic question 1s as follows:
Jonsider a second-ordosr linecar difforential equation:
(L : LA TR, Ay N . o= 0

under seme reasonable assumptions on F o oand G.  Let  vi(x,2) be a solution.

Then, generally speakina, 1im wfx, v s=atisfies the first order equation:
(W
(2) F(x,0)dv/dx + G(x,0)v = 0.

The problem of finding the relation between (1) and (2) is called the problem

Of singular perturbations. " injo.. " wcans that solutions of the equation (2)

A st cont i oo mene froe parameters as solutions of (1) do.  In other words,
, = 1w osometning.  This phenomenon is explained by means of
Aredary-=.a o0 " .-+ 11lly, various physical phenomena exhibit similar

ihaviours.  Ther. fore, the problem of singular perturbations has been studied

fory many vears.

\\\\\i;>ﬁn a vortain situation which arises naturally in applications, \3
= QO

e sl as Ep Lca prerrsie s o (X, BpSCon
lim %, = ¢ identically for practically all the solutions v of (1),

wxxu;tjahdn ‘F and G oare related in a specific way. This exceptional case

iv catled the case of resconance. It is important to find an effectively
«omrurable condition for the resonance. B. J. Matkowsky found such a condition.
Howewve -, so far, it has boen mathematically very difficult to prove that the
Matkowsky-condition actually guarantees the resonance. The difficulty is due
to the fact that o uantity which is decisive in determining the resonance 1is

500 amall o that any oxisting mathematical tool has failed to dig this quantity

out o tie differential ecmgation clearly.  In this work, we shall provide

Suc i oa tool.

The roesponsibalite for the wording and views exprossed in this descriptive
cumrares Lies with MR, and not with the guthor of this repert.
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be sectors in the complex e-plane, where o

A THEOREM CONCERNING UNIFORM SIMPLIFICATION AT A TRANSITION
*
POINT AND THE PROBLEM OF RESONANCE

+
Yasutaka Sibuya

1. 1Introduction: The main result of this paper is the following theorem:

Theorem 1.1: Let
(1.1) Sj = {g; aj <arg e < bj’ 0 < |e] <o} (3 =1,...,v)

is a positive number and the a's

and the b's are real numbers. Let Gl(e)....,dv(s) be functions of «.

Assume that

(i) Sl V) 32 U .o U Sv = {e; 0 < |e] < o};
(ii) 6j(e) is holomorphic in Sj; e

chession F??-h_
"NTIS GRAXI

DTIC TAB
Uaannounced

(iii) Gj(e) is asymptotically zero as e » 0 in

6,00 < xlel” (N =0,1,...) in S,

u

for some positive numbers K _;

N - —
(iv) if §, NS #§&§, we have l BY e
- 1 k I \ ! Dictribution/
(1.2) ‘sj(E) - 6k(E)( s co GXP(-cl/Ie[ ) iﬂ‘ Sj N Sk ,; Avaitaviiity Cooen
P uali r
for some positive numbers Syr € and A. R

Then, there exists a positive number H such that

L

(1.3) CACIES exp(-c,/|e]")  in o,

3

*
This paper was prepared while the author was at the Mathematics Research Center,
University of Wisconsin-Madison, Madison, WI 53706.
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We shall prove this theorem in Section 8. (For another proof, see
J.-P. Ramis [5; Theorem 11-(i), p. 189].) 1In other sections, utilizing
Theorem 1.1, we shall treat the following problem:

We consider a differential equation:

(1.4) sdzv/dx2 + F(x,e)dv/dx + G(x,e)v =0 ,

where F and G are holomorphic in two complex variables x and € 1in a

domain:

(1.5) X € Do. le] < Py *

where Do is a domain in the x-plane and Po is a positive number. We assume
that DO contains a real interval:

(1.6) I ={x; -a < Re(x) < b, Im(x) = 0},

0

whexre a and b are positive numbers. We also assume that
(1.7) F(x,0) = -2x .

We say that the differential equation (1.4) satisfies Matkowsky-condition,

if there exists a non-trivial formal power series solution of (1.4):

(1.8) v

i
I &~1 8

am(x)e:m
m=0

such that all the am(x) are bounded on the real interval IO' We also say

N. Kopell on IO if there exists a solution v(x,e) satisfying vi{b,e) =1,
such that v(x,f) converges uniformly on IO as €~>+0 to a non-trivial
solution of

(1.9) F(x,0)dv/dx + G(x,0)v = 0 .

(Cf. B. J. Matkowsky (4] and N. Kopell [2].)

-2~
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We shall prove the following theorem:

THEOREM 1.2. If T is a disk with the center at x =0, i.e.

(1.10) D, = {x; |x| < r,} for some r, >0 . |

In our argument, the assumption that F and G are holomorphic in

(x,e) in a poly-disk (1.5) is indispensable. 1In our proof, we follow roughly !

the guide-line given by R. McKelvey and R. Bohac [3]. It seems to us that
{ our results yield a sharp estimate for eigenvalues studied by P. P. N. de Groen
[1]. 1In Section 2, we discuss a more general case.
Throughout this research, the author enjoyed lively discussions with

N. Kopell, B. J. Matkowsky and P. P. N. de Groen.
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2. A standard form: Let 00 be a positive number and let D be a domain in
the complex £-plane which contains a real interval
f (2.1) I1=1{¢; -a g Re(E) ¢ B, Im(E) =0},
where a and B are positive numbers.
We shall consider a linear differential equation:

O (2.2) ea®v/ae? + £(€,e)av/dE + g(E,e)v = 0 ,

( where f and g are holomorphic in two variables £ and ¢ in the domain

(2.3) teD, |e|l <o, -
Set
(2.4) fo(E) = £(g,0) .

We assume that

. - 1 *
(2.5) fo(O) 0, fo(O) o, .
f (2.6) E£,(€) <O for Ee I, if £%*0 .
Under this situation, we can write fo as .
(2.7) fo(i) = £h(E) ,

where h(£) 1is holomorphic in D and
{2.8) h(§) <0 for £e 1.

- Let us change the independent variable by

£
(2.9) x=w() =1(-[ ¢ (traet |
o ©

- -,
-

Then, (2.2) becomes

-— -

0 .

(2.10) ra%v/ax? + F(x,e)dv/dx + G(x,e)v = 0 ,
!, where
g -2 -2 .
& (2.11 Flo,s) = (¢') “{o'f + e0"}, G,e) = (¢') “g .
{ .
'f Sinee f_o= =2¢¢', we have

? (2.12) F(x,e) = =2x + ¢gk(x,€} ,




and k{x,e) and G(x,e) are holomorphic in a domain

Vo e ——————

o .

(2.13) X € DO, lel < Py
where DO is a domain in the x-plane which contains the real interval:
; (2.14) To = {x; -a < Re(x) < b, Im(x) =0},
where
~-a 8
(2.15) a=+-] £,(0)at, b=J/-] £ (tat .
0 0
Another transformation:
1 X
(2.16) v =wexp{- = [ F(t,e)at}
2e
0
takes (2.10) to
(2.17) e2alw/ax® - (3 Fx,0)? e E o) - Glxie) v =
{
Note that
(2.18) i £(3 0F/x = G) = Xx° + eR(x,€) .

wnere R 1s holomorphic in (2.13).

Remark: To find the domain 0., we ust take into account not only singularities

0

of f and g, but also singularities of ¢, i.e. the transformation (2.9).

In particular, any zeros of fo

- - - -

—

would yield branch-points with respect to x.
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3. Formal simplification: It is known that there exist three formal power

series in €1

e

(3.1) Alx,e) = J A (0",
m
m=0
(3.2) B{x,e) = z B (x)zm ,
m
m=0
and
(3.3) cte) = § c e
m
m=0
such that

(1) A (x) and B (x) are holomorphic in the domain Do;

(ii) Cm are constants;
(iii) the formal transformation:
(3.4} w = Alx,e)u + Bix,¢e) (edu/dx)
takes (2.17) to
(3.5) e®a®u/ax® - (x% + ecle)hu = 0 ;

(iv) we have
(3.6) Ao(x)2 -~ (xBO(x))2 = 1 identically in DO .

To effect the transformation (3.4), we differentiate both sides of (3.4)

with respect to x. Then, we derive

(3.7) fdw/dx = (FA' + (x° + FC)B)u + (A + €B') (edu/dx) ,
and
(3.8) e24%/ax? = (s (A" + (x° + €CIB)' + (x2 + ¢C)(A + €B'))u

+ {(rA"' + (x2 + cCYBY + (A + eB")Y ") (sdu/dx) ,

. 2.2 2 .
where ' denotes 3/ax. Since ¢ d w/dx = (x2 + fRYW, we derive the

following equations on A, B and C:




€leA’ + (x° + €C)B)' + (x° + eC) (A + ¢B") ,

(x2 + gR)A
(3.9)

(x2 + €R)B = (eA' + (x2 + eC)B) + €(A + egB")"' .

In particular, if we put

X = AO' Y = xBO ’
we have
Ro(x) - C R _(x) - CO
dx/dx = ————2;—'—— Y, dy/dx = ——'—‘—‘2}(——— X,

where Ro(x) = R(x,0). Hence

d(X2 - Yz)/dx = C 1identically.

Choose CO = RO(O) and the initial condition: X(0) =1, Y(0) = 0. Then, we

ine A, B
can determin 0 0 and CO
Am' Bm and Cm can be determined in a similar way.

By virtue of (3.6), we can solve (3.4) and (3.7) with respect to u

and edu/dx:

u=E _(x,e)w + E__{(x,¢) (edw/dx) ,

(3.10) 11 12

edu/dx = EZl(x,s)w + E22(x,e)(edW/dx) ,
where Ejk are formal power series in € whose coefficients are holomorphic
in DO. In particular,

E._ (x,0) = E__(x,0) = A_(x) ,
(3.11) 11 22 0 )

Elz(xlo) = -Bo(x)' E21(x'0) = =X BO(X)

Note that
- - - g(0,0)

(3.12) CO RO(O) 1l +2 ja;&ﬂ— .

so that (3.6) is satisfied. Other coefficients
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4. OQuter expansions: A formal power series in r:

o
(4.1) v = 2 a (x)r.m
m
m=0
is called an outer expansion associated with the differential equation (2.10),

if (4.1) formally satisfies (2.10). The power series (4.1) is an outer

expansion if and only if

-2x dao/dx + Go(x)aO =0,
(4.2) 5 2
-2x dam/dx + Go(x)am = Lm(x) -d am_l(x)/dx (m>1),
where G (x) = G(x,0) and L (x) is linear homogeneous in a. ,...,a and
0 m 0 m-1

dao/dx,...,dam_l/dx with coefficients holomorphic in DO'

DEFINITION 4.1: The differential equation (2.10) is said to satisfy Matkowsky-

condition, if there exists a non-trivial outer expansion (4.1) such that all

the am(x) are bounded on the real interval IO (cf. (2.14)).

LEMMA 4.2: The differential equation (2.10) satisfies Matkowsky-condition if
oy —— —_

and only if CO is a negative odd integer and
(4.3) cC =20 (m > 1)

m =
Proof: The transformation

(4.4) u =y exp{—xz/(2€)}

changes (3.5) to

(4.5) ed%y/ax® - 2x dy/dx - (1 + C)y = 0

By a straight-forward computation, we can prove that the differential equa-

tion (4.5) satisfies Matkowsky-condition if and only if C is a negative

0
1.

odd integer and Cm =0 for m

v

Note also that, if all the am are bounded, then all the dam/dx are

bounded. Otherwise, dzam/dx2

and hence a
m+1

would have much worse singularities at x = 0,

would be unbounded (cf. (4.2)).




- -

Finally, by manipulating with the transformations (2.16), (3.4) and (3.7},

and (3.10) together with (4.4), we can show that the differential equation

(2.10) satisfies Matkowsky-condition if and only if the differential eguatiorn

(4.5) satisfies the same condition. This completes the proof of Lemma 4.2.

s
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5. Uniform simplification: Hereaftey, we s

{(5.1) CO = -p, where p 1is a posi

(5.2) C =0 for m
m

(5.3) DO = {x; |x]| < ro} for

The assumption (5.3} means that DO is a di

let us choose two positive numbers r]

and that the disk
(5.5) D. = {x; [x]

contains the real interval IO (cf. (2.14))

hall assume tihat

tive odd intoeam
~ 1
some r S~ o0

0

sk of radius v with

v

and r such that

Let us denote by T(x,r) the two-by-two matrix:

A(x,e)
lear (x,e) + (x2 - €pIB(x,¢€)

(¢f. (3.4) and (3.7)). Set

u ol
(5.7) U = ,
edu/dx,
Then, the formal transformation
{(.35) W = T(x, U

rakes the systom

-
) (‘
N sdW/dx = ! o
-~ .
Lx 4 s R{x,
t
‘ (Bl
f
{ 1o dudx o=
L™ =,
U }
ine rrerorse ol the mogty X T(x,0) bl
-10~
.

B(x,e) 1

Alx,c) 3 fB'fx,f\J

e
W= b
Ledw/dx]

) 0




E._(x,¢) E. . (x,¢8)
(5.11) T(x,e) L= | 11 12
E2l(x,s) E22(x.e)
(cf. (3.10)).
Set
(5.12) D, = {x; |x| <r}

It is known that there exist two positive numbers 0, and Pyr @ function
k §(e), and a two-by-two matrix P(x,c) such that
(i) §(e) 1is holomorphic in the sector
(5.13) S = {e; |arg ¢| <« oy 0 < le| < 0, i
(ii) 8§(e) is asymptotically zero as € > 0 in S, i.e.
i (5.14) [s(e)] < KN}E]N (N=0,1,2,...) in 8
for some positive numbers KN;
(iii) entries of P and P-l are holomorphic in the domain
(5.15) X € Dz’ ce S ;

. - . . 1 .
(iv) P (resp. P l) admits the matrix T (resp. T ~) as an asymptotic
expansion as ¢ - 0 in S which is valid uniformly in 02;
(v) the transformation

(5.16) W= P(x,e)V

takes (5.9) to

‘ 0 1"

(5.17) edv/dx = } 5 v
V [x" - elp + 8(e)) 0]
( in the domain (5.15). (Cf. Y. Sibuya [6].)

’] Utilizing this result and manipulating with rotations of the disk D_,

we can prove the following lemma:




LEMMA 5.1: There exist sectors

%

(5.21-3) =de/dx

in the Jdomain (5.19-9).

(5.18=3) Sj = {r; a, < arg ¢ < bj, 0 < |e| < 03’: (3 =1,2,...,%) , )
(where is a positive number and the a's and the b's are real 1
ey , =4 and the and the are real
Laneors), funccions xSl(»:) P ,(Sk(e) , and two-by-twe matrices I"] {(x,., . Y
e such chat S U ... U S = {e; 0 < [e] <yt and that
(i) Sj(p) is hoiomorphic in Sj;
; (11 ‘*’.-1.(»‘) is asvmptotically 2zero as € -~ 0 in Sj ;
(111) vntriecs of and P." are holomorphic in the domain
S.19-3 € € ;
( 1 3} X D2r € S:l
. -1 . . -1
(iv) P (resp. Pj ) admits the matrix T (resp. T ) as an
i
' asymptotic expansion as ¢ - 0 in Sj which is valid uusiformly in 02;
(v) the transformation
1 .
(5.20) W= P.(x,e)V,
J 3
takes (5.9) to
r 0 1

o

| T

- e(p + &, (2))
]
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6. An estimate for Gj(e). In this section, as an application of cur main
theorem (cf. Theorem 1.1}, we shall derive an estimate
(6.1) |5j(e)| < Hy exp( - rz/lel) for c e Sj .

where Hj is a positive number. To do this, it is sufficient to prove that,

if §,.n Sj # 1§, we have
b

2
. - M - s VS, ,
(6.2) |62(e) éj(e)| < 23 exp(- r“/le|) for e bz SJ
where ng is a positive number. To derive an estimate (6.2), we need some
preparation.

Let us consider the differential equation
2 2 2 .
(6.3) d®z/dt” - (t° - a)z = 0, where a 1s a parameter .

This equation admits a solution

(6.4) z = Z(t,a)
such that
(1) 7Z 1is an entire function in (t,a) ;

2
i -

(1) lim 2 (I it
ttoo

zZ(t,a) =1

uniformly in a if a 1is in a compact set in the a-plane.
The solution 2Z(t,a) 1is uniquely determined by (i) and (ii). The functions

z((-i)t,-a), 2(~-t,a), and Z(it,-a) are also solutions of (6.3). Set

(z(t,a) Z((-i)t,-a)
{6.5-0) Wo(t,a) = ,
L2'(t,a) (-11z2' ((-DHt,-a)
[Z((-i)t,-a) Z(-t,a)
(6.5-1) v (t,a) = ,
L(=1)2'((-1)t,-a) -2'(-t,a)

]

(6.5=2) Wz(t,a)

['Z(-t,as z(it,-a) |
|
J

L—Z'(-t,a) iz'(it,-a)

e,




and
[ 7(it,-a) Z(t,a) |
(0.5 (=11} < (tha) = -
liz'(it,-a) 2'(t,a) ]

where ' denotes 379t

sotytions of (&L3) .

St,‘t
(6.6) Ve = 27 -2
and
(C.7)
Then,
-~ Yo(t,a) =y
.89

1

These four matrices are matrices of independent

2mifa+l) V2- tani
o e et et e = - ) ’
S S a v hpfel = eide
(\1(a> 1]
Cla) = | |
1A (a) OJ
L2

(t,a Cla), ‘%l(t,a\ = ‘%z(t,a)c(—a) ,

iytta) = ¢ (r,aliar, v (t,a) = ot a Ci-a)

+

Fix ¢ and j so that § 7 Si # §. Choose a branch of 7 in the

sector S, 7 Sj. Set

N o']‘
() () = é il
10 (A
[RETeY
o ,\(x, ) = ﬂ(i)fh(x/ﬁ‘, P+ 6L(€))'
e 4 . (h = =1,0,1,2)
p ) o= . /e S .
f i,h(x' ) (r) h(x,r . 1 j(r)).
Shen, :','(x'{)' 1,’ (%,t), :i,2(x") and ¢:I_1(x.5) {resp., Qj'o(x,’B.
x40 Ik, and 4 ((X.r)) are fundamental matrix solutions of
Ve S A
{(Hhu2i- frespy (5.21-1)) cush that




ollo(x,s) = °R,1(X'E)C(p + GQ(C)) '
Qill(x,e) = oi’z(x,e)C(-p - 62(5)) )
(6.11-2) | 0, LK€l =0, L ixe)Clp + § ()
\ ol,-l(x'E) = @i'o(x,s)C(-p - Gﬁ(e)) ,
and

v ’ = l' C ’
( F o(Xs€) Qj'l(x )l(p + Gj(e))

= 3 - - ’ 1
¢j l(x.e) 3 2(x,€)C( p Gj(e))

!

(6.11-3) i
3. (x,e) = %, (x,e)C(p + §.(e)) , :
jo27 jo-1 P L
. (x,e) =3, (x,6)C(-p - b.(e)) . ’
jo-1 j.0 P J
Set
. v
(6.12) J = ( '
LO -1A
, and
2 !
f Q. . (x,e) = 5 ,(x,c)oxp’(-l)h gy, i
i,h <, h 2¢ th = -1,0,1,2) [
(6.13) h x2 e :
Dy e =Ry e e 1 gt

It is known that, if (x,:) i~ in a domain

i
. ‘ x 1 1
{(6.14-h) x € 02. € € S; Sj' :arq(TT) 773 hm| < STV
where v 1s a small positive number, we have
.
)
¥ -1 q
j. (6.15) foj’h(x,r>‘: < Hleld, HQj’h(x,e) o< ulel®,
“ where H is a positive number depending on Vv, g 1is a real number, and |[ !| ‘
r deriotes a usual norm of matrices., Furthermore, the matrix
t, (6.1¢F) ij'h(x,r) - Qf,h(x'f)
5 is asymptotically zero as + =0 in S 7 Sj unifrrmly in the domain

., (6.14-h). (For thosec results, ser, for example, v. Sibuya 16,7].)




Lot Pg(x,e) and Pj(x,e) be the matrices given in Lemma 5.1. Then,

P, i O(X.s) ana Pj(x,c)¢j O(x,c) are two fundamental matrix solutions
] [
£ (5.7 in the domain
LT X € , € € NS,
9, S, "S,
i lwre, there exists a two-by-two matrix L{g) such that
j .
t . Py - "] =
' (CEEE L;\x.a)@llo(x.e) Pj(x,c)¢j'o(x,e)L(e)
; t that L(g) dees not depend on x. It follows from (6.18) that
; o CXPy - fﬁ J L(L)oxp{ii JY =9 (x e)_lP.(x c)-lP (x,€)0 (x,
; . B 2¢e j, o "' b [ I,
I
t Deties , Yo matr ix
; <2 2
ot [FEA - — J} -
{ ) expl 5% J}L(E)exp{ZE } 12

asvimutotically zero as € ~ 0 in SL N Sj uniformly in the domain
(G.14=-0Y, wvhere 12 1s the two-by-two identity matrix.
In the same way (manipulating with the connection formulas (6.11-:) ar.

v.11-91), we can prove that the matrix

i 2 2
X X
I ( LY 2 A b4 - — . : - - } -
{ ] pr{ZE T}Ll(r)exp{ 50 J 12

LsoyTy totically zoro as - - 0 in SQ N Sj uniformly in the domain

cLbi-1r, where

N
' -

‘3 TR :lty) = C(p + 6j(s))L(C)C(p + 62(5)) ! .

§

y Lt matrix

. D

2 2
X . x
(v xpl=— I €le - = J} -

{ | Lxgiz[ L, Yexp({ 3 l2

!, aormitotieally zers o as ¢+ 0 in Sg ~ Sj uniformly in the demain
J

: Gouli=r=1)1), whoere

i

A ~1
o ( i LGy = Cl=p = 8 (¢0) "L(e1Cl=p ~ & (e1)

1 p 3 2

9

f

}
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Set
.
c., (g) c (E)T
L(e) = 11 12 ,
c21(e) czz(e)
e cll(s) clz(e)
(6.25) 1 1 3 ) & (&) !
€21'€ 22
c. . (€} g, (g)
L (e) = 11 12
' 2 &, (€) & ()
| ©21 22
Then,
R - )
(6.26) 12(c) {Xl(p-+6j(e))cll(e) + c21(€) /Az(p~+6£(c))

- 5 ;
Al(p‘+61(6)){X1(p-+6j(e))clz(c) + c22(c)}/X2(p4-mz(c)) ;

and

! (6.27) <&, () Al(-p-dz\e))cll(e) + A (-p-—éﬁ(e))clz(s)

2

Al(—p-d.(e))

- _ o oo s e o
X (P8 0e) D (=P -8 (e))e, (€) + 2, (=p =8, (e))cy,(0)

Utilizing the fact that, for any ¢ € SQ ~ Sj' there exists an x € 91

i such that

D (i) (%x,f) 1is in the domain (6.14-h),

&
(i1) x/€° takes either a real value or a purely imaginary value,

e

we derive from (6.20), (6.21) and (6.23) that

. -
D

y (n cll(r) - 1 and c22(s) - 1 are asymptotically zero
f, as ¢ ~ 0 in S. NS, ;
‘ £ hl
! (2) e, ()] < ¢ exp(-r2/lrl), fe_ te)] < ¢ exp(-rz/(ﬁj)
\‘; 12 = 21 = '
ﬁ for ¢ € S? il Sj' where ¢ 1is a positive constant;
} ‘ )
q; (3) lclz(e)l <c exp(-rz/]rl\ for c¢e€ § T Sﬁ
. . 2 5
¢ (4) lczl(fll g ¢ oexpl-r /[r|) for ¢ € S{ ' Sj
]
-17-
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Sot ula) = \l(a)/\z(s\. Then,
ML(ep - 4;(r\);ll (7)) = L (-pn- Ej(s)‘:zz(r)!
= L (-p- su<-\\f;11<f» - cy,le)t +{;(-p-—5c(€)) -u(—p-sj(e)>}c22(c)|
¢ ¢ exp(-rzf ¢V in S. ? S_i
for some & - O. Since L (=p) # 0, we have
(i .248) ‘c“m - &7‘32(6’ < cl‘sim - éj(e)l + czexp(—rz/lel)

i S Sj for some o0 0 and ¢, > 0. On the other hand,

(eVVo, () =

- l(p-*ﬁk,(t))cn(c)l

A\ <
Py

= ; 3 (e -3 a 1 - -
[ je LB e e ey + A (pHE, (e)) ey () cyp (€1}

N 5
< cexpl(~r"/ el in 8§ 7 Sj
- dll
for some ¢ > 0. 3ince \1(p) =0 and :;;’(p) # 0, we have
(6.29) 6. (e) ~ 5j(c)' < c3{xl(p + dt(e))llcll(c) - c22(€)|
2 .
-~ al
+ ¢ exp(~r /lely in SR Sj
for some <y > 0 and S > 0. An estimate (6.2) follows from (6.28) and
(¢.29) .

-18-
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7. Resonance: In this section, we shall prove Theorem 1.2. To do this,

we return to Section 5. We proved there that the transformation (5.16) takes
the system (5.9) to (5.17) in the domain (5.15). The function &(¢)
satisfies the condition (5.14). We replace (5.14) by

(7.1) [6(e)| < H exp(-r2/|e|) in 8§

WA

for some positive number H.
Set

@h(x,s) = A(E)Wh(x/e%.p + §(e))
(7.2)

@h(x,s)

A(E)Wh(x/E%:P)r (h = '1,0,1,2) .

Then, @h(x,e) (resp. 5h(x,e)) are fundamental matrix solutions of (5.17)

(resp. (5.10)) such that

r

9, (x,€) = ¢l(x.e)C(p + 8(e)) ,
J ¢1(x,a) = ¢2(x,e)C(—p - 8(e)) ,
(7.3) ¢2(x,s) = @_l(x,s)C(p + 8(e))
®_l(x,e) = ¢O(x,e)C(—p - &8(e))

and

oy (xsE) = ¢1(x,€)C(p) ,

¢l(x,e) = @2(X,E)C(-p) P
(7.4) Y _ X

¢2(x,€) = @_1(x,c)C(p) '

o_ (xse) = ¢ (x,e)Cl-p) .

Set
_ ~ -1

(7.5) S(x,e) = ¢O(x,e)¢0(x,e) .

Then, the transformation
(7.6) vV = S(x,e)U
takes (5.17) to (5.10). Hence, the main part of the proof is to show that

S(x,e) - 1, is asymptotically zero as « > 0 in § uniformly in D]. Noto

=19~
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8. Proof of Theorem 1.1: We shall prove Theorem 1.1 in the case when v = 3.

The general case can be treated in the same manner. We shall consider three

sectors S 32. S. as shown in Figure 1.

3

%

l'

Figure 1

We denote by 31,2, 52'3, 33,1 the intersections Sl n 32, 32 N S3'

53 i Sl' respectively.

i € &, (e e ic ] ' » S,

The three functions dl(c), 2(-), .3(“) are holomorphic in Sl 52 3
respectively. Furthermore,
(8.1) 5j(F) is asymptotically zero as € =~ 0 1in Sj ,
and
(8.2) 16, (e) = 8. (e)] < c expl- ¢ /!e&xs in $ .

j+1 3 = o 1 ' 3, j+1
, e, A it = , & =6 . We shal

where o' €y are positive numbers, and 53'4 33,1 4 1 e shall

denote &, _(e) = 8.(e) b o,(g).
' j+1 j Y9
We consider a sufficiently small disk:
(8.3) D= {¢; |e‘ < po} .

We choose three line-segments Ql' Qz, Q3 starting from ¢ = 0 1in such a

way that

(8.4) . (Cf. Figure 2.)

., ¢S, .
) 3,3+l




—

Figure 2

Three line-segmernts El, QZ' 23 divide the disk D (cf. (8.3)) into

,\ ~ ~ - N !

. three open sectors Sl, 32, 33 (cf. Figure 2). The boundaries of Sl, 52, 33

are respectively

.5-3 . + .- . ;] = 1,2 B
(8 3) Q]—l y] Ej, J .3
where io = 23, and the y's are circular arcs such that
(8.6) Y.+ ¥, + vy, s C={e; |e| =0}

1 2

~

The line-segments 4 and the circular arcs Yj are oriented as indicated

in Figure 2. We assume that o is so small that

(8.7) s.cs.,

where Sj denotes the closure of Sj'

- 4

T
Set, for € € Sl 32 53,

‘f (8.8) Sc) = &, () if ¢ € §,
1 i J J
T Since
a : 8. () 8 (e) re S, ,
: 5‘;‘ f E-l_—'; da& = ] ] .
‘ ! vy —F 0 < £ S,

N Ao




1 3 Gj(e) - . -
§(e) = a1 .Z f o d¢ in Sl ¥ 32 (V] 33 .
j=1 £ -1+Yj-£j
Utilizing
1 Y -m+l) m Nt
Pt Lo e gy ——
N m=0 £ (£ - )
we derive
N 3
ste) = 52 ) { v £ mﬂ)é.(&)d&}sm
m=0 3=l g +y-t J
3 §.(8)
1 j N
* { T L N+l dg}e "
ji=1 £. _+y.-Q. - €)
=18yt (e

Since &(g) is asymptotically zero as ¢ > 0 in S, U S_U 33, the first

term must be zero, and hence

3 &, (g)
N S R N+1
§(e) = { 5 -21 Bl e T di} €
= -1 \j ;G 5 2
Thus we arrive at the following formula:
3 o. (&)
1 5 (% N
(8.9) S(e) = 271{ I [ w1 —ag+ [ 8 dg}e
=l &, £ (£ - ¢) C & (% )
N for ¢ € Sl u 52 U 33 and N =1,2,3,..., where Jj = 6j+1 - 6j.
) Construct three open sectors 51, 32, 33 as shown in Figure 3, where

0 < Dl < po and 6 1is a small positive number. Then,

0

ST oy -5y

a¢,
N
00 0 1

A




radius = p

1
Figure 3
oJ(E) o 0 -N- _
< -c. t dt
( N ae) 2 sin 8 f t exp °1 )
L8R - )
]
e +oo -1
0 (NX "=
Y sin 8 g exp ( clT}dr
<
0 -(N/X)
= by
X sin 8 1 r /)
for r € S1 ) 37 U 53, where R is a positive number. Since
/Xy - X
F(N/AY < Cl(N/X)(N )e (N/A)
for some C1 ~ 0, we have
X N (N/V)
N - h\
{+.10) ls(er] < c lEl—— e (N/2)
= 2{ c,A
1
for ¢ S] U 32 v Sz; C1 is a positive number. For a given ¢, choose
N so that
C
N1 N+
3 N = B\
el
Then, 1t follows from (2.10) that
1
)\ A
CA A & - < 3 A=~ ¢ ' .
(oL [y ] 2 che exp(= e /el
choosing ) in various ways, we can complete the proof of Theorem 1.1.
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